Nonradioactive Rubidium Efflux Assay Technology for Screening of Ion Channels
نویسنده
چکیده
منابع مشابه
Validation of an atomic absorption rubidium ion efflux assay for KCNQ/M-channels using the ion Channel Reader 8000.
M-channels (M-current), encoded by KCNQ2/3 K(+) channel genes, have emerged as novel drug targets for a number of neurological disorders. The lack of direct high throughput assays combined with the low throughput of conventional electrophysiology (EP) has impeded rapid screening and evaluation of K(+)-channel modulators. Development of a sensitive and efficient assay for the direct measurement ...
متن کاملDevelopment of an HTS assay for Na+, K+-ATPase using nonradioactive rubidium ion uptake.
A high-throughput screening (HTS) assay was developed for the Na(+),K(+)-ATPase channel in order to study rubidium uptake as a measure of the functional activity and modulation of this exchanger. The assay uses elemental rubidium as a tracer for K(+) ions. Three cell lines were used to study the exchanger, and the assay was performed in a 96-well microtiter plate format. Rb(+) uptake was carrie...
متن کاملCharacterization of a hERG screen using the IonWorks HT: comparison to a hERG rubidium efflux screen.
The introduction of parallel patch clamp instruments offers the promise of moderate-throughput, high-fidelity voltage clamp for drug screening assays. One such device, the IonWorks HT (Molecular Devices, Sunnyvale, CA), was evaluated and compared to conventional human ethera- go-go-related gene (hERG) patch clamp data and an alternative functional screen based on rubidium flux. Data generated b...
متن کاملEvaluation of the rubidium efflux assay for preclinical identification of HERG blockade.
Inhibition of the delayed-rectifier potassium channel current, human ether-a-go-go (hERG), by pharmaceutical agents can lead to acquired long QT syndrome and the generation of potentially lethal arrhythmias and sudden death. There remains an unmet need for higher-throughput assays to screen compounds in preclinical development for the potential to block hERG and cause QT prolongation. We evalua...
متن کاملDesign, synthesis and biological activity of pyrazolo[1,5-a]pyrimidin-7(4H)-ones as novel Kv7/KCNQ potassium channel activators.
Voltage-gated Kv7/KCNQ/M-potassium channels play a pivotal role in controlling neuronal excitability. Genetic reduction of KCNQ channel activity as a result of mutations causes various human diseases such as epilepsy and arrhythmia. Therefore, discovery of small molecules that activate KCNQ channels is an important strategy for clinical intervention of membrane excitability related disorders. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010